Vasopressin-induced currents in rat neonatal spinal lateral horn neurons are G-protein mediated and involve two conductances.

نویسندگان

  • M Kolaj
  • L P Renaud
چکیده

Arginine vasopressin (AVP) receptors are expressed early in the developing spinal cord. To characterize AVP-induced conductances in lower thoracic sympathetic preganglionic (SPN) and other lateral horn neurons, we used patch-clamp recording techniques in neonatal (11-21 days) rat spinal cord slices. Most (90%) of 273 neurons, including all 68 SPNs, responded to AVP with membrane depolarization and/or a V1 receptor-mediated, dose-dependent (0.01-1.0 microM) and tetrodotoxin (TTX)-resistant inward current. A role for G-proteins was indicated by persistence of this inward current after intracellular dialysis with GTP-gamma-S or GMP-PNP, its marked reduction with GDP-beta-S, and significant reduction, but not abolition, after preincubation with pertussis toxin or in the presence of N-ethylmaleimide. Analysis of individual current-voltage (I-V) relationships in 57 cells indicated the presence of two different membrane conductances. In 21 cells, net AVP-induced currents reversed around -103 mV, reflecting reduction in one or more barium-sensitive potassium conductances; in 12 cells, net AVP-induced current reversed around -40 mV and was not significantly sensitive to several potassium channel blockers including barium, tetraethylammonium chloride (TEA), 4-aminopyridine (4AP), cesium, or glibenclamide, suggesting increase in a nonselective cationic conductance that was separate from Ih; in 24 cells where I-V lines shifted in parallel, AVP-induced inward currents were significantly greater and probably involved both conductances. These data indicate that SPNs and a majority of unidentified neonatal lateral horn neurons possess functional G-protein-coupled V1-type vasopressin receptors. The wide distribution of AVP receptors in neonatal spinal lateral column cells suggests a role that may extend beyond involvement in regulation of autonomic nervous system function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two conductances mediate thyrotropin-releasing-hormone-induced depolarization of neonatal rat spinal preganglionic and lateral horn neurons.

Thyrotropin-releasing hormone (TRH) has been recognized as a neuromodulator in several CNS regions, including the thoracolumbar spinal cord where an influence on cardiovascular autonomic function has been proposed. To identify the cellular mechanisms involved in the latter, whole cell patch-clamp recordings were obtained from 52 thoracolumbar lateral horn cells, including 17 sympathetic pregang...

متن کامل

Angiotensin AT(1)-receptors depolarize neonatal spinal motoneurons and other ventral horn neurons via two different conductances.

Angiotensin receptors are highly expressed in neonatal spinal cord. To identify their influence on neuronal excitability, we used patch-clamp recordings in spinal cord slices to assess responses of neonatal rat (5-12 days) ventral horn neurons to bath-applied angiotensin II (ANG II; 1 microM). In 14/34 identified motoneurons tested under current clamp, ANG II induced a slowly rising and prolong...

متن کامل

RAPID COMMUNICATION Two Conductances Mediate Thyrotropin-Releasing-Hormone-Induced Depolarization of Neonatal Rat Spinal Preganglionic and Lateral Horn Neurons

Kolaj, Miloslav, Susan J. Shefchyk, and Leo P. Renaud. Two autonomic regulation, because, when intrathecally adminisconductances mediate thyrotropin-releasing-hormone-induced detered, TRH can alter blood pressure and sympathetic tone polarization of neonatal rat spinal preganglionic and lateral horn (Helke and Phillips 1988; Yashpal et al. 1989; Yusof and neurons. J. Neurophysiol. 78: 1726–1729...

متن کامل

Electrophysiological evidence for vasopressin V(1) receptors on neonatal motoneurons, premotor and other ventral horn neurons.

Prominent arginine-vasopressin (AVP) binding and AVP V(1) type receptors are expressed early in the developing rat spinal cord. We sought to characterize their influence on neural excitability by using patch-clamp techniques to record AVP-induced responses from a population of motoneurons and interneurons in neonatal (5-18 days) rat spinal cord slices. Data were obtained from 58 thoracolumbar (...

متن کامل

Low-affinity kainate receptors and long-lasting depression of NMDA-receptor-mediated currents in rat superficial dorsal horn.

In an in vitro spinal cord slice preparation whole cell electrophysiological recordings of rat superficial dorsal horn neurons responding differentially to glutamate (Glu) and N-methyl-D-aspartate (NMDA) were investigated systematically for the role of kainate (KA) receptors in modulating their activity. In these neurons, coapplication of Glu and NMDA, as well as application of Glu immediately ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 4  شماره 

صفحات  -

تاریخ انتشار 1998